Nanoscale Polymer Electrolytes: Ultrathin Electrodeposited Poly(Phenylene Oxide) with Solid-State Ionic Conductivity

نویسندگان

  • Christopher P. Rhodes
  • Jeffrey W. Long
  • Michael S. Doescher
  • John J. Fontanella
  • Debra R. Rolison
چکیده

Incorporating ions within electrodeposited polymer dielectric films creates ultrathin solid electrolytes on a length scale (<50 nm) that bridges molecular electronics and conventional electrochemical devices. Electrooxidation of phenol in basic acetonitrile generates electrodeposited nanoscale (21 ( 2 nm), pinholefree poly(phenylene oxide), PPO, films on indium-tin-oxide substrates. Solid-state electrical measurements using top electrode contacts (vapor-deposited Au, liquid Hg, or liquid Ga-In eutectic) confirm that these PPO films are electronically insulating (7 ( 2 × 10-12 S cm-1) with a high dielectric strength (1.7 ( 0.1 × 106 V cm-1). The insulating film is converted to an ultrathin solid polymer electrolyte by soaking in a solution of LiClO4-propylene carbonate and then heating under vacuum to remove solvent. Atomic force microscopy establishes that the salt-impregnated film is thicker (43 ( 10 nm) than the as-prepared PPO film. The X-ray photoelectron spectroscopic measurements suggest minimal retention of solvent in the film. Electrochemical impedance measurements demonstrate that the incorporated ions are mobile in the solid state with an ionic conductivity of 7 ( 4 × 10-10 S cm-1. Such ultrathin solid polymer electrolytes should enable progress toward nanoscopic solid-state ionic devices and power sources.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure and conductive properties of poly(ethylene oxide)/layered double hydroxide nanocomposite polymer electrolytes

The oligo(ethylene oxide) modified layered double hydroxide (LDH) prepared by template method was added as a nanoscale nucleating agent into poly(ethylene oxide) (PEO) to form PEO/OLDH nanocomposite electrolytes. The effects of OLDH addition on morphology and conductivities of nanocomposite electrolytes were studied using wide-angle X-ray diffractometer, polarized optical microscopy, differenti...

متن کامل

Melt-Formable Block Copolymer Electrolytes for Lithium Rechargeable Batteries

Microphase separated block copolymers consisting of an amorphous poly~ethylene oxide! ~PEO!-based polymer covalently bound to a second polymer offer a highly attractive avenue to achieving both dimensional stability and high ionic conductivity in polymer electrolytes for solid-state rechargeable lithium batteries. However, due to the strong thermodynamic incompatibility typically found for most...

متن کامل

High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide).

High ionic conductivity solid polymer electrolyte (SPE) has long been desired for the next generation high energy and safe rechargeable lithium batteries. Among all of the SPEs, composite polymer electrolyte (CPE) with ceramic fillers has garnered great interest due to the enhancement of ionic conductivity. However, the high degree of polymer crystallinity, agglomeration of ceramic fillers, and...

متن کامل

Ionic conductivity enhancement studies of composite polymer electrolyte based on poly (vinyl alcohol)-lithium perchlorate-titanium oxide

In this study, poly (vinyl alcohol) (PVA), lithium perchlorate (LiClO4) and nano-sized titanium oxide (TiO2) were employed as host polymer, dopant salt and inorganic filler respectively. The influence of the inorganic filler on ionic conductivity, structural and morphological properties of the polymer matrix are investigated. Ionic conductivity of polymer electrolytes is measured by ac-impedanc...

متن کامل

Ionic Liquid-Based Thermoplastic Solid Electrolytes Processed by Solvent-Free Procedures

A series of thermoplastic polymer electrolytes have been prepared employing poly(ethylene oxide) (PEO) as a polymer matrix, bis(trifluoromethane sulfonimide) (LiTFSI), and different room-temperature ionic liquids (RTIL) with bis(fluorosulfonyl)imide (FSI) or TFSI anions. This formulation makes them safe and non-flammable. The electrolytes have been processed in the absence of solvents by melt c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004